7. State Rolle's theorem and verify the Rolle's theorem for $f(x) = x^3 - x^2 - 6x + 2$ in [0, 3].

Solution:

here,

$$f(x) = x^3 - x^2 - 6x + 2$$
 \forall $x \in [0, 3].$

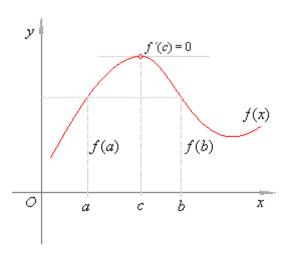
Rolle's theorem:

A function f(x) is:

- i. continuous on [a, b]
- ii. differentiable on (a, b)
- iii. f(a) = f(b)

Then, there exists at least a point $c \in (a, b)$ such that,

$$f''(c) = 0$$
.



Problem Part:

- i. $f(x) = x^3 x^2 6x + 2$ is an polynomial function and polynomial functions are continous on their domain. So, f(x) is continous $\forall x \in [0, 3]$.
- ii. $f'(x) = 3x^2 2x 6$ is defined $\forall x \in (0, 3)$. So, f(x) is differentiable $\forall x \in (0, 3)$.
- iii. Thus, f(x) satisfies both conditions of Rolle's Theorem so, by Rolle's Theorem there exists at least a point $c \in (0, 3)$ such that,

$$f'(c) = 0$$

or,
$$3c^{2} - 2c - 6 = 0$$

or, $c = \frac{1 \pm \sqrt{19}}{3}$
 $\therefore c = \frac{1 + \sqrt{19}}{3} \in (0, 3)$

Hence, Rolle's Theorem is verified.